

#### LA-UR-18-24798

Approved for public release; distribution is unlimited.

Title: Antarctic Ice shelf-ocean interactions in high-resolution, global

simulations using the Energy Exascale Earth System Model (E3SM)

Author(s): Asay-Davis, Xylar Storm

Comeau, Darin Scott Hoffman, Matthew James Maltrud, Mathew Einar Petersen, Mark Roger Price, Stephen F. Dr Van Roekel, Luke Veneziani, Carmela Wolfram, Phillip Justin Jr.

Intended for: European Seminar on Computing, 2018-06-04/2018-06-08 (Pilsen, Czech

Republic)

Issued: 2018-06-04







# Antarctic Ice shelf-ocean interactions in high-resolution, global simulations using the Energy Exascale Earth System Model (E3SM)

Xylar Asay-Davis, Darin Comeau, Matthew Hoffman, Mathew Maltrud, Mark Petersen, Stephen Price, Luke Van Roekel, Milena Veneziani, Phillip Wolfram

Los Alamos National Laboratory





#### **Outline**

- E3SM model and project
- Ice shelf/ocean interactions in E3SM
- Land ice/ocean coupling in E3SM
- Summary





# **Energy Exascale Earth System Model (E3SM)\***

The U.S. Department of Energy (DOE) *E3SM* project aims to meet DOE and U.S. government agency needs for state-of-the-science Earth system modeling.

- Phase 1: July 2014 June 2018
- Public release: April 2018
- Phase 2: July 2018 June 2021

#### Science focus areas:

- Water Cycle
- Biogeochemistry
- Cryosphere:

How will the atmosphere, ocean, and sea-ice systems mediate sources of sea-level rise from the Antarctic ice sheet over the next 30 years?

N. Atlantic hurricane in high-resolution configuration (color=SST)

<sup>\*</sup> formerly the Accelerated Climate Model for Energy (ACME)





#### E3SM Version 1.0 Release

#### Public release of v1 code and simulations ~6 weeks ago

- Project homepage (<a href="https://e3sm.org">https://e3sm.org</a>)
- Code available on Github (<a href="https://github.com/E3SM-Project/E3SM">https://github.com/E3SM-Project/E3SM</a>)
- Simulations (limited DECK) (<a href="https://e3sm.org/data/get-e3sm-data">https://e3sm.org/data/get-e3sm-data</a>)

#### Highlights:

- open development
- variable resolution (all components)
- new ocean, sea ice, land ice models
- new var. res. analysis framework
- ocean circulation beneath ice shelves (currently unverified; unsupported)





#### **Cryosphere Simulations (ongoing)**

Identical low (EC60to30km) & medium (RRS30to10km) resolution configurations, with & without Antarctic ice shelves:

- Prescribed atmospheric forcing (multiple CORE-IAF cycles)
- Coupled atmosphere/land/ocean/ sea-ice pre-industrial (several cen
- Coupled atmosphere/land/ocean/ sea-ice historical (1850-present)



ocean transport in global, med. resolution simulation





#### **Cryosphere Simulations: Goals**

- Demonstrate ice shelves "do no harm" to global simulations
- Demonstrate sub-ice shelf melt rates and other relevant ice-sheet-proximal climate characteristics plausible relative to observations
- Explore sensitivity to (1) presence/ absence of shelves, (2) forcing and coupling, (3) resolution
- Release of CORE-IAF, pre-industrial equilibrium, and historical simulations by fall 2018



ocean transport in global, med. resolution simulation





#### Ice shelf/ocean interactions

- Ice shelves: floating extensions of ice sheets and glaciers
- Ocean waters flow into cavities below ice shelves
- Temperature of inflowing water determines the amount of melting (nonlinear effect)



From Hanna et al. (2013)





#### **Observed Bottom Temperature and Melt Rates**



From Schmidtko et al. (2014)

From Rignot et al. (2013)





#### Ice shelves in E3SM







#### Ocean temp. sensitivity to Ice Shelves in E3SM







# Ocean salinity sensitivity to Ice Shelves in E3SM







# Melt rate sensitivity to resolution in E3SM







# Melt rate sensitivity to resolution in E3SM









#### Melt rate sensitivity to resolution in E3SM













#### Seafloor temp. sensitivity to resolution in E3SM







# Seafloor temp. sensitivity to resolution in E3SM









# Surface velocity sensitivity to resolution in E3SM









#### Implementation of ice-shelf cavities in E3SM

- Vertical coordinate system:
  - constrained pressure-gradient errors
- Adjustment of sea-surface height:
  - must be consistent with ice pressure
- Parameter study:
  - Best-fit values for uncertain coefficients





#### Horizontal pressure gradient with tilted coordinates

Horizontal pressure gradient:

$$-\frac{\partial P}{\partial x}\Big|_{z} = -\rho_{s}g\frac{\partial \zeta}{\partial x} - g\int_{z}^{\zeta} \mathcal{J}(\rho, z)ds,$$

• Green's Theorem:

$$\iint\limits_{\mathcal{A}} \mathcal{J}(\rho, z) \ dx \ ds = \oint\limits_{\mathcal{A}} \rho(\mathbf{k}, \mathbf{l}) dl,$$

Nonlinear equation of state (EOS):

$$\rho = \rho(S, \Theta, p)$$

EOS involves the pressure itself



From Shchepetkin and McWilliams (2003)



#### Horizontal pressure gradient with tilted coordinates

Second-order discretization of

$$\oint \rho(\mathbf{k}, \mathbf{l}) dl,$$

leads to instability when Layers are both:

- thin
- strongly tilted
- Haney Number rx1: a non-dimensional measure of this effect (Haney 1991)



From Shchepetkin and McWilliams (2003)





# The Haney Number: rx1 ≤ 5







#### Consistent sea surface height and ice pressure

- Ice pressure is the weight of the overlying ice shelf
- In equilibrium, balanced by ocean pressure
- Pressure at ice-ocean interface (z<sub>b</sub>)
  changes by raising/lowering





#### Consistent sea surface height and ice pressure

- Difficulties in finding equilibrium z<sub>b</sub>:
  - density variation (horizontal and vertical)
  - Various possible equations of state
  - Various possible implementations of horizontal pressure gradient



 E3SM uses iterative adjustment of z<sub>b</sub> to minimize dz<sub>b</sub>/dt over the first hour of sim.





#### Parameter Sensitivity Study at 30-km resolution

- 23 runs with 13 uncertain parameters
- Compared melt rates to
  observations (Rignot et al. 2013)
- Found 4 parameters with high sensitivity
- Determined best-fit values to minimize bias

Green's function method of Menemenlis et al. (2005):

 Assume perturbations in model state are linear in perturbed parameter values:

$$y^d = G\eta + \varepsilon$$

• Find parameter values that minimize a cost function:

$$J = \boldsymbol{\varepsilon}^T \boldsymbol{R}^{-1} \boldsymbol{\varepsilon} = \sum_{i} \left( \frac{y_i^0 - x_i}{\sigma_i} \right)^2$$

• Best-fit parameter perturbations are computed as:

$$\boldsymbol{\eta_{fit}} = \left(\boldsymbol{G}^T \boldsymbol{R}^{-1} \boldsymbol{G}\right)^{-1} \boldsymbol{G}^T \boldsymbol{R}^{-1} \boldsymbol{y}^d$$





# Parameter Sensitivity Study at 30-km resolution

| Parameter Name                                                                                     | Control Value                   | Perturbed Value                 | RMS Melt Diff.<br>(Rignot et al. 2013) | Best-fit Value                     |
|----------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------|------------------------------------|
| ctrl                                                                                               | N/A                             | N/A                             | 3.274                                  | N/A                                |
| land_ice_flux_attenuation_coefficient                                                              | 10                              | 5                               | 3.274                                  | 2.56                               |
|                                                                                                    |                                 | 15                              | 3.259                                  |                                    |
| land_ice_flux_boundarylayerthickness                                                               | 10                              | 5                               | 3.283                                  | 0.351                              |
|                                                                                                    |                                 | 15                              | 3.268                                  |                                    |
| land_ice_flux_jenkins_heat_transfer_coefficient<br>land_ice_flux_jenkins_salt_transfer_coefficient | 0.011<br>3.1 × 10 <sup>-4</sup> | 0.005<br>1.4 × 10 <sup>-4</sup> | 2.046                                  | 0.00295<br>8.42 × 10 <sup>-5</sup> |
|                                                                                                    |                                 | 0.02<br>5.7 × 10 <sup>-4</sup>  | 4.685                                  |                                    |
| land_ice_flux_rms_tidal_velocity                                                                   | 0.05                            | 0.01                            | 2.806                                  | 0.133                              |
|                                                                                                    |                                 | 0.1                             | 3.983                                  |                                    |
| land_ice_flux_topdragcoeff                                                                         | 0.0025                          | 0.001                           | 2.488                                  | 4.48 × 10 <sup>-3</sup>            |
|                                                                                                    |                                 | 0.01                            | 4.637                                  |                                    |
| cvmix_kpp_criticalbulkrichardsonnumber                                                             | 0.25                            | 0.2                             | 3.306                                  | 0.0558                             |
|                                                                                                    |                                 | 1.0                             | 2.895                                  |                                    |
| cvmix_kpp_use_enhanced_diff                                                                        | true (1.0)                      | false (0.0)                     | 3.368                                  | true (0.598)                       |
| cvmix_kpp_surface_layer_extent                                                                     | 0.1                             | 0.07                            | 3.173                                  | 0.0114                             |
|                                                                                                    |                                 | 0.14                            | 3.353                                  |                                    |
| cvmix_background_diffusion                                                                         | 0.0                             | 10-5                            | 3.128                                  | 7.73 × 10 <sup>-5</sup>            |
|                                                                                                    |                                 | 10-4                            | 2.470                                  |                                    |
| cvmix_background_viscosity                                                                         | 10-4                            | 10-5                            | 3.267                                  | 9.13 × 10 <sup>-6</sup>            |
| standardgm_tracer_kappa                                                                            | 1800                            | 600                             | 3.236                                  | 1620                               |
|                                                                                                    |                                 | 1200                            | 3.440                                  |                                    |
| salinity_restoring_constant_piston_velocity                                                        | 1.585 × 10 <sup>-6</sup>        | 7 × 10 <sup>-7</sup>            | 4.570                                  | 2.45 × 10 <sup>-6</sup>            |
|                                                                                                    |                                 | 3 × 10 <sup>-6</sup>            | 4.106                                  |                                    |





#### Ongoing work: Ice-ocean coupling in E3SM

#### Ingredients needed:

- Higher-order pressure gradient
  - thinner, more tilted layers
- Wetting-and-drying
  - Allows ice to advance and retreat





# Higher-order pressure gradient

Accurate evaluation of contour integral:

$$\oint \rho(\mathbf{k}, \mathbf{l}) dl,$$

- Known approaches:
  - Choose EOS so integral is analytic (e.g. Adcroft et al. 2008)
  - high-order Gaussian quadrature
    (e.g. Engwirda et al. 2016)
- Should allow rx1 >> 5



From Shchepetkin and McWilliams (2003)





#### **Wetting and Drying Scheme**

- Thin film, O(cm) or less, of ocean in "dry" regions
- "Dry" cells allow mass fluxes in but prevent fluxed out
- Implemented for coastal sea-level change
- Work in progress: ice sheet advance/retreat:
  - Increased ice pressure from ice advance will cause drying
  - Decreased pressure from ice retreat will allow wetting



Example of ice-shelf retreat from a POPSICLES simulation





#### Summary

- E3SM v1.0 code released in April
  - low, medium, and high-resolution configurations included
  - Ice-shelf configurations included: use at your own risk
- Ice shelves will (hopefully) be default in E3SM v2.0
  - improve ocean properties, particularly at high resolution
  - allow projections of Antarctic melt rates and ultimately ice mass loss
- Dynamic coupling with land-ice model is ongoing
  - higher-order pressure gradient
  - wetting and drying



eddy activity in high-resolution ocean simulation



